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Synergetic theory for a jamming transition in traffic flow

Alexander I. Olemskoi* and Alexei V. Khomenko
Sumy State University, 2, Rimskii-Korsakov Street, 40007 Sumy, Ukraine

~Received 21 January 2000; published 23 February 2001!

The theory of a jamming transition is proposed for the homogeneous car-following model within the
framework of the Lorenz scheme. We represent a jamming transition as a result of the spontaneous deviations
of headway and velocity that is caused by the acceleration/braking rate to be higher than the critical value. The
stationary values of headway and velocity deviations and time of acceleration/braking are derived as functions
of control parameter~time needed for car to take the characteristic velocity!.
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I. INTRODUCTION

In recent years, considerable study has been given to
traffic problems@1#. It is shown, in particular, that the jam
ming transition is similar to the conventional gas-liqu
phase transition, where the freely moving traffic and
jammed traffic correspond to the gas and liquid phases
spectively. The transition between them is caused by
growth of car density above a critical value. The conges
traffic flow with an unstable uniform part leads to the form
tion of traffic jams where the freely moving traffic an
jammed traffic coexist. Within the framework of Ref.@2#, the
jamming transition is represented as a first-order phase t
sition, whose behavior is defined by headway~car density!
that acts as the volume~density! and by the inverted delay
time ~sensitivity parameter! that reduces to temperature.

Our approach is to take into consideration the comp
set of freedom degrees as equivalent variables. We obtain
self-consistent analytical description of the jamming tran
tion as a result of the self-organization caused by the pos
feedback of the headway deviation and acceleration/bra
time on the one hand, as well as the negative feedback o
deviations of headway and velocity on the other hand.

The paper is organized as follows. In Sec. II the se
consistent Lorenz system of the governed equations for
headway and velocity deviations as well as for t
acceleration/braking time is obtained. The jamming tran
tion is shown to be supercritical in character~has the second
order! if the relaxation time for the first of the pointed ou
quantities does not depend on its value; it transforms to
subcritical regime with this dependence appearance. Sec
III deals with the determination of steady-state values for
headway deviation and the acceleration/braking time wit
the adiabatic approximation. Out of the latter limit, the tim
dependences for the headway and velocity deviations
studied on the basis of the phase-portrait method. Sectio
contains a short discussion of the used assumptions.

II. BASIC EQUATIONS

Within the framework of the simplest car-followin
model, the accelerationV̇ of a given vehicle as a function o
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its distanceDx to the front vehicle is defined by equalityV̇
5@vopt(Dx)2V#/t, where vopt(Dx)5Dx/t0 is the optimal
velocity function (t0 being a characteristic time interval!, h
5Vt0 is the optimal headway, andt is the time of
acceleration/braking needed for a car to reach the opti
velocity. It is convenient to introduce deviationsh[Dx2h

and v[D ẋ2h/t01V of headwayDx and its velocityD ẋ
from the corresponding optimal valuesh andh/t02V. Then,
the flow of cars can be described in terms of the pointed-
quantitiesh, v, andt. The key point of our approach is tha
the above degrees of freedom are assumed to be of dis
tive type, so that, when they are not coupled, their relaxat
to the steady state is governed by the Debye-type equat
with corresponding relaxation timesth ,tv ,tt . Within the
simplest approach, equations for the time dependencesh(t),
v(t), and t(t) are supposed to coincide formally with th
Lorenz system that describes the self-organization proc
@3#.

The first of the stated equations has the form

ḣ52h/th1v, ~1!

where the dot stands for a derivative with respect to timt.
The first term on the right-hand side describes the De
relaxation during timeth ; the second one is the usual add
tion. In a stationary state, whenḣ50, the solution of Eq.~1!
defines the conventional linear relationshiph5thv, so that
the headway deviation is proportional to the velocity dev
tion.

The equation for the rate of quantityv variation is sup-
posed to have the nonlinear form

v̇52v/tv1gvht, ~2!

where tv ,gv are positive constants. As in Eq.~1!, the first
term on the right-hand side of Eq.~2! describes the relax
ation process of velocity deviationv to the stationary value
v50 determined by a timetv . The second term describe
the positive feedback of the headway deviationh and the
time t of acceleration/braking on the velocity deviationv
that results in the increase of valuev and, thus, causes th
self-organization process.

The kinetic equation for the acceleration/braking timet,
©2001 The American Physical Society16-1
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ṫ5~t02t!/tt2gthv, ~3!

differs from Eqs.~1! and ~2! as follows: the relaxation o
quantity t occurs not to the zero but to the finite valuet0,
representing the stationary time needed for a car to reach
characteristic velocity~in other words,t0 is the car charac-
teristic!; tt is a corresponding relaxation time. In Eq.~3! the
negative feedback of the quantitiesh and v on t is intro-
duced to imply the decrease of acceleration/braking timt
with the growth of the headway and velocity deviations (gt
.0 is a corresponding constant!.

Equations~1!, ~2!, and ~3! constitute the basis for self
consistent description of the car-following model driven
the control parametert0. The distinguishing feature of thes
equations is that nonlinear terms that enter Eqs.~2! and ~3!
are of opposite signs, while Eq.~1! is linear. Physically, the
latter means just that the velocity deviation is the derivat
of headway deviation with respect to time. The negative s
of the last term in Eq.~3! can be regarded as a manifestati
of the Le Chatelier principle, i.e., since a decrease in
acceleration/braking time promotes the formation of a sta
car flow, the headway and velocity deviationsh andv tend
to impede the growth of the acceleration/braking time and
a consequence, the jamming. The positive feedback ofh and
t on v in Eq. ~2! plays an important part in the problem. A
we shall see later, it is precisely the reason behind the s
organization that brings about the traffic jam.

To explain the relaxation transition to the stable jamm
state, we shall show further that it is quite enough to use
adiabatic approximation:tv50, tt50. Therefore, we could
proceed not from Eqs.~2! and ~3! but from much simple
expressions,

v5avht, av[tvgv , t5t02athv, at[ttgt ,
~4!

which are related to the stationary casev̇50,ṫ50 in Eqs.~2!
and ~3!, respectively. The equalities~4! have an absolutely
clear physical meaning: the increase of the headway de
tion h or acceleration/braking timet leads to a growth of the
velocity deviationv, whereas the increase of the headwayh
and velocity v deviations should cause the decrease
acceleration/braking timet in comparison with characteristi
time t0 if the car flow is not broken.

After introducing the suitable scales for quantitiesh,v,t,

hm[~avat!
21/2, vm[hm /th5th

21~avat!
21/2,

tc[~ thav!21, ~5!

Eqs.~1!, ~2!, and~3! can be rewritten in the simplest form o
the well-known Lorenz system:

ḣ52h1v, ~6!

e v̇52v1ht, ~7!

d ṫ5~t02t!2hv, ~8!

where the relaxation time ratiose[tv /th , d[tt /th are in-
troduced and the dot now stands for the derivative with
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spect to the dimensionless timet/th . In general, the system
~6!–~8! cannot be solved analytically, but in the simple
casee!1 andd!1, the left-hand sides of Eqs.~7! and ~8!
can be neglected. Then, the adiabatic approximation can
used to express the velocity deviationv and the acceleration
braking timet in the form of the equalities~4!. As a result,
the dependences oft andv on the headway deviationh are
given by

t5
t0

11h2
, v5

t0h

11h2
. ~9!

Note that, althoughh is in the physically meaningful rang
between 0 and 1, the acceleration/braking time is a mo
tonically decreasing function ofh, whereas the velocity de
viation v increases withh ~at h.1 we havedv/dh,0,
which has no physical meaning!.

Substituting the second equality~9! into Eq.~6! yields the
Landau-Khalatnikov relation:

ḣ52
]F

]h
~10!

with the effective potential given by

F5 1
2 h22 1

2 t0 ln~11h2!. ~11!

For t0,1, theh dependence ofF is monotonically increas-
ing and the only stationary value ofh equals zero,he50, so
that there is no headway deviation in this case. If the para
etert0 exceeds the critical value,tc51, the effective poten-
tial assumes the minimum with nonzero steady-state he
way deviationhe5At021 and the acceleration/braking tim
te51.

The above scenario represents the supercritical regim
the traffic-jam formation and corresponds to the seco
order phase transition. The latter can be easily seen from
expansion of the effective potential~11! in a power series of
h2!1:

F'
12t0

2
h21

t0

4
h4. ~12!

So the critical exponents are identical to those obtain
within the framework of the mean-field theory@4#.

The drawback of the outlined approach is that it fails
account for the subcritical regime of the self-organizati
that is the reason for the appearance of the traffic jam
analogous to the first-order phase transition, rather than
second-order one. So one has to modify the above theor
taking the assumption that the effective relaxation tim
th(h) increases with headway deviationh from the initial
valueth /(11m) fixed by a parameterm.0 to the final one
th @5#. The simplest two-parameter approximation is as f
lows:

th

th~h!
511

m

11~h/h0!2
, ~13!
6-2
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where 0,h0,1. The expression for the effective potenti
~11! then changes by adding the term

DF5
m

2
h0

2 lnS 11
h2

h0
2D ~14!

and the stationary values ofh are

he
m5h00$17@11h0

2h00
24~t02tc!#

1/2%1/2, ~15!

2h00
2 [~t021!2tch0

2 , tc[11m.

The upper sign on the right-hand side of Eq.~15! is for the
value at the unstable statehm where the effective potentia
F1DF has the maximum; the lower one corresponds to
stable statehe . The corresponding value of the stationa
acceleration/braking time

tm5
11h00

2 1A~11h00
2 !22~12h0

2!t0

12h0
2

~16!

smoothly increases from the value

tm511h0 A m

12h0
2 ~17!

at the parametert05tc0 with

tc05~12h0
2!tm

2 ~18!

to the marginal valuetc511m at t05tc .

III. RESULTS

The t0 dependences ofhe , hm, and te are depicted in
Fig. 1. As is shown in Fig. 1~a!, when the adiabatic condition
tt ,tv!th is met and the parametert0 slowly increases to
below tc , no traffic jam can form. At the pointt05tc , the
stationary headway deviationhe jumps upward to the value
A2h00 and its further smooth increase is determined by
~15!. If the parametert0 then goes downward, the headwa
deviationhe continuously decreases up to the point whe
t05tc0 and he5h00. At this point, the jumplike headway
deviation goes down to zero. Referring to Fig. 1~b!, the sta-
tionary acceleration/braking timete shows a linear increas
from 0 to tc with the parametert0 being in the same inter
val. Then, after the jump down to the value (12h0

2)21 at
t05tc , the stationary timete smoothly decays to 1 att0
@tc . When the parametert0 then decreases from abovetc
down to tc0, the acceleration/braking timete grows. When
the point~18! is reached, the traffic becomes freely movin
so that the stationary acceleration/braking time undergoes
jump from the value~17! up to the one defined by Eq.~18!.
For t0,tc0, again the parameterte does not differ fromt0.
Note that this subcritical regime is realized provided the
rameterm, which enters the dispersion law~13!, is greater
than the value

mmin5
h0

2

12h0
2

. ~19!
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Clearly, according to the picture described, the jamm
generation is characterized by the well pronounced hys
esis: the cars initially at motion with optimal headway b
tween them begin to deviate only if the acceleration/brak
time t0 of cars exceeds its limiting valuetc511m, whereas
the acceleration/braking timetc0 needed for uniform car
flow is less thantc @see Eqs.~17! and~18!#. This is the case
in the limit tt /th→0 and the hysteresis loop shrinks with th
growth of the adiabaticity parameterd[tt /th . In addition to
the smallness ofd, the adiabatic approximation implies tha
the ratiotv /th[e is also small. In contrast to the former, th
latter does not seem to be realistic for the system under c
sideration, where, in general,tv'th . So it is of interest to
study to what extent the finite value ofe could change the
results.

Owing to the conditiond!1, Eq.~8! is still algebraic and
t can be expressed in terms ofh and v. As a result, we
derive the system of two nonlinear differential equations t
can be studied by the phase portrait method@5#. The phase
portraits for various values ofe are displayed in Fig. 2,
where the centerO represents the stationary state and
saddle pointS is related to the maximum of the effectiv

FIG. 1. Thet0 dependences of the stationary values of~a! head-
way deviationshe ,hm; ~b! acceleration/braking timete . The ar-
rows indicate the hysteresis loop.
6-3
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FIG. 2. Phase portraits in theh-v plane at
m51, h050.1, andt051.25tc for ~a! e51022;
~b! e51; ~c! e5102.
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potential. As is seen from the figure, independently ofe,
there is the universal section, the ‘‘mainstream,’’ that attra
all phase trajectories and its structure appears to be alm
insensitive to changes ine. Analysis of time dependence
v(t) andh(t) reveals that the headway and velocity dev
tions slow down appreciably in this section in comparison
the rest of the trajectories that are almost rectilinear~it is not
difficult to see that this effect is caused by the smallness
d). Since most of the time the system is in the vicinity of t
‘‘mainstream,’’ we arrive at the conclusion that finite valu
of e do not affect qualitatively the above results obtained
the adiabatic approximation.

IV. DISCUSSION

According to the above consideration, the simplest pict
of the dissipative dynamic of traffic flow in a homogeneo
car-following model can be represented within the fram
work of the Lorenz model, where the headwayh and veloc-
ity v deviations play the role of an order parameter and
conjugate field, respectively, and the acceleration/brak
time t is a control parameter. The model is examined
show that a jam is created if the car characteristict0 is larger
than the critical magnitudetc . The above pointed-out diss
pative regime is inherent in the systems with small values
the relaxation timett for acceleration/braking, being appa
ently a characteristic of a car-driver, and large onesth , tv for
the headway and velocity deviations. According to Ref.@5#,
in the opposite casett>th ,tv , the system behaves in auto
oscillation or stochastic manners.

It is worthwhile to note that the above synergetic sche
allows us to explain the collective phenomena of jamm
se
n
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transitions in theN-body problem withN→`. Then the fol-
lowing question arises: why do exactly three variables~the
headway and velocity deviationsh,v and acceleration/
braking timet) permit us to explain the nontrivial behavio
of the N-body problem? The answer to this question giv
the theorem by Ruelle and Takens: the nontrivial collect
behavior of the many-body system~the type of strange at
tractor! can be represented only in the case in which
number of variables is not less than three@3#. The interpre-
tation of this fact is the simplest: the first of the freedo
degrees can be chosen as the way along the phase traje
and the second one corresponds to the negative Lyapu
exponent, ensuring an attraction to this trajectory, the th
one acts in the opposite manner to give repulsion. In our c
of the self-organization process, the secondv and third t
freedom degrees provide the positive and negative feedb
in Eqs.~2! and ~3!.

The last question in our approach is why does only
Lorenz scheme allow us to describe the main peculiaritie
the jamming transition? The answer is that this is the s
plest approach, permitting us to understand the s
organization effects, just as the Landau phenomenolog
theory of phase transitions describes the great variety of t
modynamical transformations in the simplest way@6#. Let us
note in this connection that the effective potential given
the sum of equalities~11! and~14! plays a part in the Landau
free energy. But the above-stated synergetic scheme h
principal difference from the Landau-type theory@2# because
the former takes into account feedback of the thermostat~the
velocity deviation and the acceleration/braking time! with
the subsystem under consideration~the headway deviation!,
whereas the latter does not.
-
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