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Synergetic theory for a jamming transition in traffic flow
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The theory of a jamming transition is proposed for the homogeneous car-following model within the
framework of the Lorenz scheme. We represent a jamming transition as a result of the spontaneous deviations
of headway and velocity that is caused by the acceleration/braking rate to be higher than the critical value. The
stationary values of headway and velocity deviations and time of acceleration/braking are derived as functions
of control parameteftime needed for car to take the characteristic velgcity
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I INTRODUCTION its distanceAx to the front vehicle is defined by equality

: . =[vopAX) = V]/7, wherev,,(Ax)=AX/t, is the optimal
; ]l‘fn receglt ye;rls:‘l, (I:to_nsmrl]erable_ stud);_hals b?ﬁnt %r']"ef‘ tot elocity function ¢, being a characteristic time interyah
rafiic probiems L. 1 IS Shown, In particuiar, that the jam- =Vt, is the optimal headway, and is the time of

g]rzggetrt?gr?st:ggn 'Swi'g;ga;hg) f:gglyc?:g\iggo?ﬂﬁi%azr:gut'geaccelgration/braking 'needeq for a car to rgach the optimal
! o A velocity. It is convenient to introduce deviatioms=Ax—h
jammed traffic correspond to the gas and liquid phases, re- . ) o
spectively. The transition between them is caused by th@"dv=Ax—h/to+V of headwayAx and its velocityAx
growth of car density above a critical value. The congeste(ﬁrom the corresponding Optlm_al Vglubsandh/to—v_ Then,
traffic flow with an unstable uniform part leads to the forma-the flow of cars can be described in terms of the pointed-out
tion of traffic jams where the freely moving traffic and duantitiesy, v, andr. The key point of our approach is that
jammed traffic coexist. Within the framework of Rg2], the ~ the above degrees of freedom are assumed to be of dissipa-
jamming transition is represented as a first-order phase trafilve type, so that, when they are not coupled, their relaxation
sition, whose behavior is defined by headwayr density O the steady state is governed by the Debye-type equations
that acts as the volum@ensity and by the inverted delay With corresponding relaxation times,,t, ,t,. Within the
time (sensitivity parametgrthat reduces to temperature. ~ Simplest approach, equations for the time dependen(gs

Our approach is to take into consideration the complet& (), and 7(t) are supposed to coincide formally with the
set of freedom degrees as equivalent variables. We obtain th@renz system that describes the self-organization process
self-consistent analytical description of the jamming transi{3]- ] _
tion as a result of the self-organization caused by the positive The first of the stated equations has the form
feedback of the headway deviation and acceleration/braking
time on the one hand, as well as the negative feedback of the n=—nlt,+v, (1)
deviations of headway and velocity on the other hand.

The paper is organized as follows. In Sec. Il the self-yhere the dot stands for a derivative with respect to time
consistent Lorenz system of the governed equations for thene first term on the right-hand side describes the Debye

headway and velocity deviations as well as for therejaxation during time, ; the second one is the usual addi-

acceleration/braking time is obtained. The jamming trans"tion. In a stationary state, whep=0, the solution of Eq(1)
defines the conventional linear relationshjp-t,v, so that

tion is shown to be supercritical in characthas the second
ordey if the relaxation time for the first of the pointed out %he headway deviation is proportional to the velocity devia-
ion.

guantities does not depend on its value; it transforms to th
subcrltlcal_reglme with thls (_jependence appearance. Section The equation for the rate of quantity variation is sup-
[l deals with the determination of steady-state values for the .

L . o ... bosed to have the nonlinear form
headway deviation and the acceleration/braking time withirP
the adiabatic approximation. Out of the latter limit, the time

dependences for the headway and velocity deviations are v=—vlt,+g,7T, 2
studied on the basis of the phase-portrait method. Section 1V
contains a short discussion of the used assumptions. wheret, ,g, are positive constants. As in E@l), the first
term on the right-hand side of EqR) describes the relax-
Il. BASIC EQUATIONS ation process of velocity deviation to the stationary value

v=0 determined by a timé¢,. The second term describes
Within the framework of the simplest car-following the positive feedback of the headway deviatiprand the
model, the acceleratiovf of a given vehicle as a function of time 7 of acceleration/braking on the velocity deviation
that results in the increase of valueand, thus, causes the
self-organization process.
*Email address: olemskoi@ssu.sumy.ua The kinetic equation for the acceleration/braking time
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7= (10— 1)It,— 9.0, 3) spect to the dimensionless tim/a-,?. In genergl, the system
(6)—(8) cannot be solved analytically, but in the simplest

differs from Egs.(1) and (2) as follows: the relaxation of casee<1andé<1, the left-hand sides of Eq$7) and (8)
quantity = occurs not to the zero but to the finite valug can be neglected. Then, the adiabatic approximation can be
representing the stationary time needed for a car to reach th&ed to express the velocity deviatiorand the acceleration/
characteristic velocityin other words,r, is the car charac- braking timer in the form of the equalitie¢4). As a result,
teristio); t, is a corresponding relaxation time. In B§) the  the dependences efandv on the headway deviation are
negative feedback of the quantitiesandv on 7 is intro- ~ given by
duced to imply the decrease of acceleration/braking time
with the growth of the headway and velocity deviatios ( T _ To7M 9
>0 is a corresponding constant 1L 7 T4 7 ©

Equations(1), (2), and (3) constitute the basis for self-
consistent description of the car-following model driven by Note that, althoughy is in the physically meaningful range
the control parameter,. The distinguishing feature of these petween 0 and 1, the acceleration/braking time is a mono-
equations is that nonlinear terms that enter EBsand(3)  tonically decreasing function of, whereas the velocity de-
are of opposite signs, while E@l) is linear. Physically, the viation v increases withy (at »>1 we havedv/d#<0,
latter means just that the velocity deviation is the derivativeyhich has no physical meaning
of headway deviation with respect to time. The negative sign  Substituting the second equali§) into Eq. (6) yields the
of the last term in Eq(3) can be regarded as a manifestation|_gndau-Khalatnikov relation:
of the Le Chatelier principle, i.e., since a decrease in the
acceleration/braking time promotes the formation of a stable . P
car flow, the headway and velocity deviatiopsandv tend n=T (10
to impede the growth of the acceleration/braking time and, as
a consequence, the jamming. The positive feedbackafd  with the effective potential given by
7onv in Eq. (2) plays an important part in the problem. As
we shall see later, it is precisely the reason behind the self- D=3 9?—37In(1+ %?). (11
organization that brings about the traffic jam.

To explain the relaxation transition to the stable jammingFor r,<1, the » dependence ab is monotonically increas-
state, we shall show further that it is quite enough to use thfng and the only stationary value gfequals zerop.=0, so
adiabatic approximatiort, =0, t,=0. Therefore, we could that there is no headway deviation in this case. If the param-
proceed not from Egs(2) and (3) but from much simple eterr, exceeds the critical value,=1, the effective poten-

expressions, tial assumes the minimum with nonzero steady-state head-
v=a,ypr, a,=t,g,, T=To—a,pv, a,=t.g,, " \;-va_yldewatlonne: V71— 1 and the acceleration/braking time
e_ .

The above scenario represents the supercritical regime of

which are related to the stationary case0,7=0 in Egs.(2)  the traffic-jam formation and corresponds to the second-
and (3), respectively. The equalitie®) have an absolutely order phase transition. The latter can be easily seen from the
clear physical meaning: the increase of the headway dewaﬁXpanS'OH of the effective potentidll) in a power series of
tion # or acceleration/braking timeleads to a growth of the 7 ?<1:
velocity deviationv, whereas the increase of the headway
and velocity v deviations should cause the decrease of b~ 1-7 2,0 0 4 (12)
. . S . . o 7 -

acceleration/braking time in comparison with characteristic 2 4
time 74 if the car flow is not broken.

After introducing the suitable scales for quantities , 7,

)71/2

So the critical exponents are identical to those obtained
within the framework of the mean-field theo].

The drawback of the outlined approach is that it fails to
account for the subcritical regime of the self-organization
that is the reason for the appearance of the traffic jam and
analogous to the first-order phase transition, rather than the
second-order one. So one has to modify the above theory by
taking the assumption that the effective relaxation time

nmE(avar)ilIZv Um= 77m/t7]=t;l(aua,.
Te=(t,a,) ", S

Egs.(1), (2), and(3) can be rewritten in the simplest form of
the well-known Lorenz system:

n=—n+v, (6) t,(m) increases with headway deviation from the initial
] valuet, /(1+m) fixed by a parameten>0 to the final one
€ v=—v+t7yT, (7) t, [5]. The simplest two-parameter approximation is as fol-
: lows:
6 7=(19—T)— NV, (8)
where the relaxation time ratios=t, /t,, 6=t /t, are in- by =1+ L, (13
troduced and the dot now stands for the derivative with re- ty(7) 1+ (7l 70)?
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where 0<7,<1. The expression for the effective potential n, |

(11) then changes by adding the term e
2
m U 0.8 —| n
A¢=5n§ In(1+—2) (14) 4
Mo
and the stationary values of are ]
0= nod 1T [1+ imos' (o 701¥ 3% ay) M a
275=(T0= 1)~ 7emy, T=1+m, -
The upper sign on the right-hand side of E#5) is for the T
value at the unstable statg" where the effective potential
® +Ad has the maximum; the lower one corresponds to theg , : Tf" 1% : .
stable staten.. The corresponding value of the stationary 1|s 1Is 20 2|2 7 2'4

acceleration/braking time

L et V(L 90— (1-ng) 7o
-

(16)
1- 75
smoothly increases from the value
m b
Tm=1+ g 2 (17)
1=
at the parametery= 7.5 with

Teo= (1= 75) 7 (18

to the marginal value.=1+m at 7o= 7.

lIl. RESULTS 2.2 W 24

~The 7, dependences ofje, 7", and 7 are depicted in FIG. 1. Thery dependences of the stationary valuesaphead-
Fig. 1. As_|s shown in Fig. ®), when the adlabgtlc condition way deviationsy,, ™, (b) acceleration/braking time,. The ar-
t,,t,<t, is met and the parametey, slowly increases to rows indicate the hysteresis loop.
below 7., no traffic jam can form. At the pointy= 7., the
stationary headway dewauone.jumps upward to t.he value Clearly, according to the picture described, the jamming
V2700 and its further smooth increase is determined by Eq, T .

generation is characterized by the well pronounced hyster-

(15). If the parameterr, then goes downward, the headway esis: the cars initially at motion with optimal headway be-
deviation 7, continuously decreases up to the point where =" itafly at | . P i y D

_ _ . : : . tween them begin to deviate only if the acceleration/braking
To= Tco and ne= 7mgg. At this point, the jumplike headway i f ds its limiti U — 1+ h
deviation goes down to zero. Referring to Figb)l the sta- IME 7o Of cars Exceeds Its imiting vaiug = 1 +m, whereas

tionary acceleration/braking time, shows a linear increase ]Elhe qc?eler?ﬁon/ brakm% t|r(nle7€)o ngf(afge)d _frc;]r' u.n|ftck)]rm car
from 0O to 7. with the parameter, being in the same inter- ow is less tharr, [see Eqs an ]. This is the case

val. Then, after the jump down to the value{lyg)*l at M the I|m|ttT/t,,f>O apq the hysteresis loop Shl’lnk'S.WIth the
s —r  the stationary timer. smoothly decavs to 1 a growth of the adiabaticity parametért./t, . In addition to

0 e y e y y 0 the smallness o8, the adiabatic approximation implies that
> .. When the parameter, then decreases from abovg

down to the acceleration/braking fi rows. When the ratiot, /t, =€ is also small. In contrast to the former, the

0 Teor U <ing ime. 9 ’ . latter does not seem to be realistic for the system under con-
the point(18) is reached, the traffic becomes freely moving, i\ ovion. where. in genera,~t, . So it is of interest to
so that the stationary acceleration/braking time undergoes thsﬁud to V\’/hat ext’ent the finite vglﬁe efcould chanae the
jump from the valug17) up to the one defined by E¢L8). resuﬁs 9
For o< 7.9, again the parametet, does not differ fromr. - . o :
NoteOthatc?hisgsubcriticgl regimzéis realized provided tf?e pa- Owing to the conditiord<<1, Eq.(8) is still algebraic and

rameterm, which enters the dispersion la(®3), is greater T can be expressed in term; of anq v- AS. a resuIF, we
than the value derive the system of two nonlinear differential equations that

can be studied by the phase portrait meth®H The phase

77CZ) portraits for various values oé are displayed in Fig. 2,
Myin= 5 (199  where the centeO represents the stationary state and the
1-ng saddle pointS is related to the maximum of the effective
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potential. As is seen from the figure, independentlyepf transitions in theN-body problem withN—oc. Then the fol-
there is the universal section, the “mainstream,” that attractdowing question arises: why do exactly three variakie

all phase trajectories and its structure appears to be almoseadway and velocity deviationg,v and acceleration/
insensitive to changes ia. Analysis of time dependences braking time7) permit us to explain the nontrivial behavior
v(t) and 5(t) reveals that the headway and velocity devia-of the N-body problem? The answer to this question gives
tions slow down appreciably in this section in comparison tothe theorem by Ruelle and Takens: the nontrivial collective
the rest of the trajectories that are almost rectilif@as not  behavior of the many-body syste(the type of strange at-
difficult to see that this effect is caused by the smallness ofractop can be represented only in the case in which the
8). Since most of the time the system is in the vicinity of thenumber of variables is not less than thi& The interpre-
“mainstream,” we arrive at the conclusion that finite valuestation of this fact is the simplest: the first of the freedom
of € do not affect qualitatively the above results obtained indegrees can be chosen as the way along the phase trajectory,

the adiabatic approximation. and the second one corresponds to the negative Lyapunov
exponent, ensuring an attraction to this trajectory, the third
IV. DISCUSSION one acts in the opposite manner to give repulsion. In our case

of the self-organization process, the secendnd third 7

According to the above consideration, the simplest picturdreedom degrees provide the positive and negative feedbacks
of the dissipative dynamic of traffic flow in a homogeneousin Egs.(2) and(3).
car-following model can be represented within the frame- The last question in our approach is why does only the
work of the Lorenz model, where the headwayand veloc-  Lorenz scheme allow us to describe the main peculiarities of
ity v deviations play the role of an order parameter and itghe jamming transition? The answer is that this is the sim-
conjugate field, respectively, and the acceleration/brakinglest approach, permitting us to understand the self-
time 7 is a control parameter. The model is examined toorganization effects, just as the Landau phenomenological
show that a jam is created if the car characterisjics larger  theory of phase transitions describes the great variety of ther-
than the critical magnitude.. The above pointed-out dissi- modynamical transformations in the simplest W&y, Let us
pative regime is inherent in the systems with small values ohote in this connection that the effective potential given by
the relaxation time . for acceleration/braking, being appar- the sum of equalitie€l1) and(14) plays a part in the Landau
ently a characteristic of a car-driver, and large ongst, for ~ free energy. But the above-stated synergetic scheme has a
the headway and velocity deviations. According to RBf,  principal difference from the Landau-type the$g} because
in the opposite casg=>t,,t,, the system behaves in auto- the former takes into account feedback of the thermdsiat
oscillation or stochastic manners. velocity deviation and the acceleration/braking tjnveith

It is worthwhile to note that the above synergetic schemehe subsystem under consideratigine headway deviation
allows us to explain the collective phenomena of jammingwhereas the latter does not.
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